Research Overview: The Department of Orthopaedic Surgery's Bone and Joint Center

Gary Gibson, PhD January 9, 2012

Bone and Joint Center

- Research division of the Dept of Orthop Surgery
- Founded in 1990 under Dr. Eric Radin
 - chair, 1989-1995
 - established research center covering the range of disciplines needed to thoroughly investigate skeletal diseases.
 - interested in understanding the development and treatment of osteoarthritis

Research Interests

- Osteoarthritis
- Osteoporosis
- Ligament injuries
 - anterior cruciate
 ligament (ACL)
 rupture
- Tendon injuries
 rotator cuff tears
- Spine function

Multi-Disciplinary Research Team

- Cell Biology
- Biochemistry
- Anatomy / HistologyBiomechanics

Motion Analysis

Personnel

- Additional Personnel
 - scientific editor (1)
 - emeritus scientist (1)
 - post-doctoral fellows (2)
 - instructors (2)
 - research engineers (3)
 - research assistants (3)
 - research coordinators (2)
 - research students (4)
 - grants/contract specialist (1)

Motion Analysis

In-vivo joint function - shoulder

C. McDonald

M. Bey

Motion Analysis

- In-vivo joint function
 - shoulder
 - cervical spine
 - knee
 - elbow
 - foot/ankle

In-vivo tendon function

augmenting tendon repair/healing

Anatomy/Histology

- Understanding the mechanisms behind changes in bone mechanical properties due to:
 - estrogen depletion
 - diet
 - changes in mechanical loading
 - chronic alcoholism

Anatomy/Histology

- Characterization of materials (bone) by:
 - mechanical testing
 - histology

Anatomy/Histology

- Characterization of materials (bone) by:
 - mechanical testing
 - histology
 - histomorphometry
 - quantitative microradiography
 - collagen imaging using surface demineralization and AFM

Biomechanics

- Bone fractures
 - improving the diagnosis of fracture risk associated with osteoporosis
 - improving techniques for preventing and treating fractures

Biomechanics

- Estimating how mechanical strain is distributed in bone: the relationship between microstructural and strain heterogeneity and fracture.
 - high-resolution imaging
 - computer simulation
 - mechanical testing

Biomechanics

- Estimating how mechanical strain is distributed in bone
 - high-resolution imaging
 - micro-CT
 - tomosynthesis

Biochemistry

- Cartilage Breakdown
 - using OA cartilage, synovium, synovial fluid from patients to identify:
 - protein markers of cartilage breakdown
 - changes in cartilage matrix homeostasis

Biochemistry

OA Pain

- role of nutraceuticals (e.g., glucosamine, chondroitin sulfate) to treat pain
 - double-blinded study
 - effects of a neutraceutical on knee OA pain

Cell Biology

Skeletal development and osteoarthritis

Type X collagen

Rat tibia human articular cartilage

interface with subchondral bone

Cell Biology

- Post-traumatic osteoarthritis
 - use of non-coding RNA's in serum as biomarker for the early prediction of OA

Productivity

- NIH Funding
 - 74 years of grants
 - ~\$21 million in total costs

- Publications
 - ~250 full-length manuscripts

Collaborations

Universities / Research Hospitals

- California Polytech. State Univ (SLO)
- Cedarville University
- Cleveland Clinic
- Colorado State University
- Detroit Medical Center
- Louisiana State University
- MD Anderson Cancer Center, University of Texas
- Michigan State University
- Oakland University
- Ohio State University
- Purdue University
- Royal College of Surgeons in Ireland
- Tufts University
- University of California, Davis
- University of Guelph, Ontario, Canada
- University of Michigan
- University of Notre Dame
- University of Pittsburgh
- University of Sydney, Australia
- University of Utah
- University of Vermont College of Medicine
- Wayne State University

Collaborations

Corporate Partners

- DonJoy Orthopaedics
- Hills Pet Food
- Innovative Health Technologies
- Nike

Additional Info

Henry Ford bone.joint.center.

Home | Research | Personnel | Opportunities | Links | Upcoming Events | Contact Us

News From The Lab...

· ORS Abstracts: Researchers from the Bone and Joint Center had 12 abstracts accepted to the 2012 Orthopaedic Research Society annual meeting, to be held February in San Francisco.

<u>2 New Grants</u>: Congratulations to Dr. Yener Yeni

 New Grant: Dr. Colin McDonald, along with Dr. have recently being awarded a grant from the spine function after fusion.

 <u>NIH Recognition</u>: Dr. Gary Gibson and his their research on biomarkers for predicting the development of osteoarthritis. Read more HERE

www.henryfordboneandjointcenter.com

Thank You

Henry Ford Hospital Detroit, MI

What Causes Knee Arthritis?

"Microklutziness": microincoordination causing <u>subtle</u> <u>changes</u> in joint motion

Abnormal forces on the cartilage

Biological changes

Osteoarthritis (worn cartilage)

