

Neurology Research Henry Ford Hospital

presented by **Zhenggang Zhang, MD. Ph.D.**Senior Scientist, Department of Neurology

Neurology Research Directed by Michael Chopp Ph.D

NIH grants: 1 PO1 and 10 RO1

Senior Scientists: 10

Stroke is the leading cause of disability. There are ~4 million disabled stroke survivors in the United State. Thus, there are compelling needs to develop therapies for improvement of neurological outcome in these patients.

Restorative Therapies for Stroke

Model of Middle Cerebral Artery Occlusion

before after

MRA

MRA

MRA

TTC

How to Study Adult Neurogenesis

Neuroblast migration tracked with time-lapse microscopy

How to Study Neural Stem Cell Fate in the Ischemic Boundary Zone

Stroke Changes Gene Profiles in Neural Stem Cells Isolated by Laser Capture Microdissection

How to Study Cerebral Angiogenesis

Stroke induces angiogenesis in vivo, as measured by 2-photon microscopy

How to Study Coupling of Neurogenesis with Angiogenesis

In Vitro Studies of Interactions between Angiogenesis and Neurogenesis: Co-culture of Cerebral Endothelial and Neural Stem Cells

How to Study Axonal Regeneration

How to Study Axonal Regeneration by MRI

How to Study Neurological Function after Stroke

Restorative Therapies for Neural Injury

